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The Future of Computing Beyond Moore’s Law

That is actually what | will be talking about
today...




Technology Scaling Trends
Exascale in 2021... and then what?
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Exascale
Happens in
2021-2023
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Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Bu ton Smith



Projected Performance Development
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Historically 1000x
improvement every 11
years

Erich Strohmaier
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New models y

New Materials and Devices

‘ ‘ More Efficient Architectures and Packaging 4 F”*“"T \
The next 10 years after exascale ' Hardware Specnallzatlon

>

«{|  Many unproven candidates yet to be invested at scale. Most are disruptive to our current ecosystem.
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Beyond Moore Computing Taxonomy

Symbolic Computation,

Arithmetic,
Logic

Inspired
Cognitive Computing,
Pattern Recognition ~

Combinatorial/NP,
Annealing/Optimization,
Simulated Atoms



Extreme Hardware Specialization is Happening Now!

Is trend is already well underway in broader electronics industry
Cell phones and even megadatacenters (Google TPU, Microsoft FPGAs...)

and it will happen to HPC too... will we be ready?
Connectivity

Quad ARM® Cortex™-A9 Core S |G o
32KBI-Cache 32 KB D-Cache 40
per Core per Core MMC 4.4/ - £
NEON per Core PTM per Core SDXC 8 35
S/PDIF o
: UART x5, TX/Rx 30
1 MB L2-Cache + VFPv3 5 Mbps o
Multimedia PCle 2.0 © 25
TR A e IC x3, (1-Lane) ﬂl-)
SPI x5 = 20
FlexCAN x2 s 15
ESAI, I’S/SSI || MLB150 + L
‘©
33VGPIO |[|1GbEthemet| § 4+ 5
+ |IEEE® 1588 0
Keypad
A4 A5 A6 A7 A8 A9 A10 A1
WA C 2010 2017
M
‘ i estimates [Y. Shao 2015]
Display and Camera Interface ] LP-DDR2,
24-bitRGB, LVDS (x2) | | USBZOTG || DRI
USB2Host ||  xaz/ed,
MIPI DSI 20-bit CSI and PHY 533 MHz
[www.anandtech.com/show/8562/chipworks-a8]




Large Scale Datacenters also Moving to Specialized Acceleration

The Google TPU

Deployed in Google datacenters since 2015
“Purpose Built” actually works - Only hard to use if
accelerators was designed for something else

B |
B
|

Could we use TPU-like ideas for HPC? ; |
T | i Partial Sums
Specialization will be necessary to meet energy-efficiency ]f]]]
and performance requirements for the future of DOE science! . %. Cone
Measured B inpt s rad a once, and they mtan
i TOPS/s | GOPS/s /Watt On-Chip 256 accumulaor RAM.
Model | MHz atts GB/s
Memory
Idle | Busy 8b FP 8b FP
Haswell | 2300 41 145 2.6 1.3 18 9 51 51 MiB
NVIDIA K80 560 24 98 -- 2.8 29 | 160 8 MiB
TPU 700 28 40 92 -1 2,300 34 28 MiB

Notional exascale system:
2,300 GOPS/W =>7? 288 GF/W (dp) - a 3.5 MW Exaflop system!




Specialization:

Natures way of Extracting More Performance in Resource Limited Environment

Powerful General Purpose Many Lighter Weight Many Different Specialized
(post-Dennard scarcity) (Post-Moore Scarcity)
ﬂ, ‘ g\ ‘( @
Probing Filter feeding ' 4.

/’ ‘ whe _f\
Nectas feeding Fruit eating
Aetial fishing Pursuit fishing ﬂ ﬁ

* p ‘@-— i Chiseling Dip netting
Scavenging Raptorial Surface skimming Scything

Xeon, Power KNL AMD, Cavium/Marvell, GPU Apple, Google, Amazon




Neil Thompson: Economics of Post-Moore Electronics

http://neil-t.com, MIT CSAIL, MIT Sloan School
The Top

Technology 01010011 01100011
01101001 01100101 @

01101110 01100011

Transistor Scaling

' Q Better Performance/ Cost

01100101 00000000 Investment
Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
engineering Market growth
Examples Removing software bloat New problem domains Processor simplification
Tailoring software to New machine models Domain specialization Transistor Focus
hardware features Technology, divice &circuit
innovations,
system integration
T
The Bottom imestment e ncronalty
Pagers for example, semiconductor technology

1. The Economic Impact of Moore’s Law

2. There’s Plenty of Room at the Top: What will drive computer
performance after Moore’s Law?

3. The Decline of Computers as a General Purpose Technology System Focus

>
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Market growth

MIT
INITIATIVE ON TH:
DIGITAL ECONOM
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http://neil-t.com/

The Future Direction for Post-Exascale Computing

Past - Homogeneous Present - CPU+GPU

Architectures

CPU CPU Mem

Inter-
face

Buses

GPU/ Mem

Architectures

CPU cPU CPU CPU

Mem
Inter-

face

Buses
DSP CPU cPU l’n]t::L GPU/DSP ---

Towards Extreme Heterogeneity

: Present - Heterogeneous :

Future - Post CMOS Extreme
Heterogeneity

Architecture, Device and Memory
Heterogeneity

System Bus
Hybrid g | DRAM -
Memory r—{r‘!;'F'il‘Z: e
Cube - "FFEI

Dilip Vasudevan 2016




Industry: Heterogeneous Integration Roadmap

Data to the Autonomous
Mobile Cloud Vehicles
Everywhere 2

HETE ROGENEOUS Data Centers
INTEG RATIO N ROAD MAP All future applications will be further transformed through the power of Al, VR, and AR.

2019 Edition

3o o o
http:/leps.ieee.org/hir :

HPC and Megadatacenters is 2"? chapter b
i o

FAd
a0
.

Die + Heterogeneous System in Package (SiP)

ZoN ELECTRONICS A g CLECTRON e 73\\/“@' 1
€5 PACKAGIN ¢ &Y DEvices Photonic E semi
\/J SOSIETGY G v §OCIETY® Society SETTING THE STANDARD / l 9




Architecture Specialization for Science

(hardware is design around the algorithms) can’t design effective hardware without applied math

The multi-disciplinary codesign
capabilities developed through

Past - Homogeneous Future - Post CMOS Extreme

Architectures : e

the ECP investment are uniquely Sk e
qualified to Carry this Out. \\ Architecture, Device and Memory

Heterogeneity

CcPU cru Mem E o
Inter- - GPU/
: DspP

. Buses

: Mem

1 GPU/DSP Intes-
fffff s B -

This needs to be done in close collaboration with applied mathematics
You cannot specialize effectively without deep understanding of the algorithmic target for those specializations
Need to know degrees of freedom for reformulating the mathematics to match hardware strengths



Potential Paths Forward for HPC

1. Specialization: purpose built machines for big
science targets

2. Heterogeneity: Co-integration of many
heterogeneous accelerators

3. Disaggregation: Photonic MCMs to enable

reconfigurable systems




Post Exascale: Heterogeneous Computing Research Directions

\
Lecr | Ler \
[rRa ] [NV

™M M
CPU/GPU Packet
Switching MCM

* Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
* RISC-V and ARM cores
* Fixed function FFT (Generated by SPIRAL)

* Word Granularity Scratchpad Memory (Gather Scatter):
* Gather-scatter within processor tile
+ more effective SIMD

* Recoding engine (Efficient programmable FSM & data reorg.)
* Sub-word granularity and high control irregularity
* Handles branch-heavy code (avg. 20x improvement over processor core)
* One lane is 1/100% the size of a x86 processor core

k Queues (Lightweight Interprocessor Communication)
* Gather-scatter between processor tiles
* Async between tiles to eliminate overhead of barriers

Project 38

Optical switch

Heterogeneous Integration Resource Disaggregation

Co-integration of many heterogeneous Photonic MCMs to enable
accelerators .
reconfigurable nodes/systems

Specialization

Purpose built machines for

blg science ta rgets' Example: Apple Bionic chip, AWS Graviton2, Example: Facebook/Google.

Project38. Just DRAM utilization diversity in

DOE could benefit from this.
A 4

Example: Google TPU. For DOE, DFT is 25% of
uvorkload




Specialization

Purpose built machines
for big science targets.

Example: Google TPU. For DOE,
DFT is 25% of workload

BERKELEY LAB




Algorithm-Driven Design of Programmable Hardware Accelerators

Example: LS3DF/Density Functional Theory (DFT)
What: Design the hardware acceleration
around the target algorithm/application
— Purpose-built acceleration
— Science-led reference algorithm design

25%+ of DOE
workload is
Density
Functional
Theory (DFT)

Why: Huge opportunities to improve
performance density and efficiency

— FFT hardware accelerator 50x-100x faster than GPU
(using SPIRAL generator)

How: Target Density Functional Theory Exp. Data Analysis Fusion (Cont. or PIC)
1. Large fraction of the DOE workload
2. Mature code base and algorithm

3. LS3DF formulation minimizes off-chip
communication and scales O(N)




The DFT kernel for each fragment

Communication Avoiding LS3DF Formulation — Scales O(N)

°
$eeeee

Fragment (2x1)

“——Buffer area

Interior area

Artificial surfe
passivation

h(i, j) = (v,

- - p—

H"/’f>

CGRA

or

FPGA

nGi, )= (v, |Hw,)

Sub_diag, *

O(NZ? Log(N))

mm bound if non-local

Hpsi, *

Precond. CG step ~

Projection, *

3D parallel FFT

TSQR & Choelesky
ZGEMM

Line minimiz.
Orth., * /

Sub_diag, *

/L

LS3DF O(N) Algorithm Formulation
Minimizes off-chip Communication

>
A
i
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One patch per CGRA
400 bands/patch

O(N3)
Compute-bound

Compute Intensive Kernels

Targeted for HW Specialization




Von-Neumann Instruction Processors vs. Hardware Circuits

(must redesign for static dataflow and deep flow-through pipelines)

Von Neumann CPU Dataflow (FPGA, GraphCore etc.

s | a |
vy { \ A 1 Y 3 4 | 2
Y \ X} \ \ \
L A.A.\ \ E '

FPGA (Field Programmable Gate Array): Granularity 5

of these operations and wires are single bits

£ 2*R;,_,(0,0,0)
o R[t-n 1](0 0,0)
+=C " R;.,.1(+1,0,0)

CGRA (Coarse Grain Reconfigurable Array). J0) -= C * 2 * Rypn(0.0,0)

.y . D,0) += C * R,_,(-1,0,0)
Programmability & ALUs at word granularity o) s O ZRL_I%]”](?J(; 2
improves speed and density!! b,0) += C * Ryu_n(0,-1,0)

D,0) += C * Ry_n.1,(0,0,+1)
(Cerebras, GraphCore, SambaNova, LPU) D0l =02 Fei0.09)
pgisters

ASIC or Chiplet (custom circuit): Another factor of

10x on density and energy efficiency.




Algorithm Reformulated as Custom Circuit

Won Neumann CPU Dataflow (FPGA G GraphCore etc.)

E R e——— R, 1,(0.0.0) = O
« S uOio o = e oo
St » — O (t—re2] -O. —-—= (t—=r—33 O,
— [ T (0.0.0) +— < =~ R 1:(+1.0.0)
—wIami dl e (2 < TOO> (t—re3] N (e e a3
< o e e e
— g [t—re ] .O. - ey C— 1 2O,
== =T ok WS = = T R (O, +1.0)
PrEgame (T — =aN=mT —-= B = O Y 2 T R (0.0.0)
(r—e1 -O.
S e . L SRPNOD - = = C T R (O.-1.0)
=2 F rx —— SO) Eo e =3 = C T R 1;(0.0O.+1)
3 = O T 2 T R (0.0.0)
Er—EZaze("aAa11 <—Sorne ! ") = = C T R (O0.0O.-1)
;3 Rotate Registers

Point wise

iFFT1D
FFT3D

>

i See Also Torsten Hoefler “StreamBLAS” for FPGA
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Preliminary Performance on CGRA HY

Eigenvalue Problem

h(i, j) = (¢ilH|v;)

. P; = Hip; — €1
Hpsi
Ai 5o
P,=A(P - P,
)\’l
@ ,
Projection = P =P — Z (Pilv;)
=1,
v, = ;cosb; + P;sinb;
Orthogonalization v = U; — Z(‘v“"’i‘@/)

J<i

h(i, §) = (il H|5)

Von Neumann CPU or GPU

int main()
{
int n = 0;
while(n < 100)
{
n=n + S
print("n = SdA\n", n)
Ppause(200)
if(n == 50) break;
}
Print("All donel™);

Dataflow Algorithm Reformulation

Dataflow (FPGA, GraphCore etc.

v (1) A Y 8| |z 2
B ) \ \ \ \

[ | N N - )

Y ~ X
AT OTOTO!

R{-n+1)(0,0,0) =0
R(1-n+1)(0,0,0) += 2*°R;_,(0,0.0)
R[t=n+l](oiovo) o= R[:=nv1](°,0,0)
R[l:rwt](o-ovo) +=C R[l=n¢1|(+1 ,0,0)
R{-n+1)(0,0,0) -= C * 2 * R;;_,)(0,0,0)
R1-n+1)(0,0,0) += C * R;._,(-1,0,0)
R1=n+1)(0,0,0) += C * R.,.1,(0,+1,0)
R[l:nf!](olo'o) —=C*2* R[l:n|(°,°-0)
R1-n+1)(0,0,0) += C * R;_,(0,-1,0)
R1-n+1)(0,0,0) += C * R;_,.4,(0,0,+1)
R{-n+1)(0,0,0) -= C * 2 * R;_,(0,0,0)
R1-n+1)(0,0,0) += C * R;,(0,0,-1)
Rotate Registers

| Thom Popovici, Andrew Canning (FFTx), Zhengji Zhang (NERSC)

frereer "I|

BERKELEY LAB Franz Francetti (CMU/FFTX)

Micto botch = 1
- ns "
-7ax 5 = .
96,25
i te 1220250
28 [128x8, 256]
e

Mapping onto Custom Hardware

e lE

SRR s % Contctonoupt

Total Cycles = 7.8 + 10.6(9612 + 2= 97.6M,
Lotency=97.6M 125G =T8ms
DDR BW Requied = (756 + 3456 + 2= 4214 M8)/ 78 ms = 53 GB/s

Accelerate the design of full
custom accelerators!!



* Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
* RISC-V and ARM cores
* Fixed function FFT (Generated by SPIRAL)

Word Granularity Scratchpad Memory (Gather Scatter):
* Gather-scatter within processor tile
* more effective SIMD

* Hardware Message Queues (Lightweight Interprocessor Communication)
* Gather-scatter between processor tiles
* Async between tiles to eliminate overhead of barriers

Project 38

Heterogeneous
Integration

Co-integration of many
heterogeneous accelerators

Example: Apple Bionic chip, AWS
Graviton2, Project38.

>

A
")
(reeeee
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Project 38 -- Background

DOD and DOE recognize the imperative to develop new mechanisms for

engagement with the vendor community, particularly on architectural
innovations with strategic value to USG HPC.

Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the
DOE Office of Science, and NNSA (these latter two organizations are referred to in this
document as “DOE”). These explorations should accomplish the following:

® Near-term goal: Quantify the performance value and identify the potential costs of

specific architectural concepts against a limited set of applications of interest to
both the DOE and DOD.

Long-term goal: Develop an enduring capability for DOE and DOD to jointly explore
architectural innovations and quantify their value.

Stretch goal: Specification of a shared, purpose built architecture to drive future

DOE-DOD collaborations and investments. (purpose-built HPC by 2025)

Internal
COTS

Desigh &

Production
Traditional DOEgp Aggressive Innovative

Procurement Vendor USG




P38 Technology Features Nl :

* Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
* RISC-V and ARM cores
* Fixed function FFT (Generated by SPIRAL)

* Word Granularity Scratchpad Memory (Gather Scatter):
* Gather-scatter within processor tile
* more effective SIMD

* Hardware Message Queues (Lightweight Interprocessor Communication)
* Gather-scatter between processor tiles
* Async between tiles to eliminate overhead of barriers




Hardware Generators: Enabling Technology for Exploring Design Space

Co-Develop Hardware
and Algorithm

Together with Close Collaborations with Applied Math & Applications

Chisel
DSL for rapid prototyping
of circuits, systems, and
arch simulator components

Chisel

Software Hardware
Compilation Compilation

Systen]C Verilog
ion
C++

Simulation T
< N <
FPGA ASIC
\

RISC-V

——

ISA/Cores

OpenSOC

Open Source Extensible Open Source fabric
To integrate accelerators
And logic into SOC

OpenSoC

SuperTools
Superconducting
RISC-V

;L"*’ ~ QUASAR
- l:::“n = Quantum ’
- Boj-  [SA

Fabric

: j ;
o Architecture
"‘_e

Active
- Sensors

Multiagency

Exploration




Results for RISC-V FFT Accelerator for CryoEM

Benchmarking FFT Accelerator for image analysis (Donofrio, Fard)

nstucton | opeoaeiaiz)

fft config 10b Configures FFT parameters
fft status 01b Reads FFTAccel status registers
fft start 11b Starts FFT processing
fft stop 00b Stops FFT processing
PCPI

valid -
iNnsN[31:0] =y
rs1[31 ;0] =
rs2[31 :0] = FFT

wr Accel
rd[31:0]

wait

Original Image

ready

Created RISC-V Core with FFT ISA Extension

RISC-V+FFT Accel 126x faster than x86 host

—FFT on Intel Core i7-5930K @ 3.50GHz: ~265ms
—FFTAccel (Floating): ~2.10ms




Resource Disaggregation

Photonic MCMs to enable
reconfigurable nodes/systems

Example: Facebook/Google.
Just DRAM utilization diversity in
DOE could benefit from this.

BERKELEY LAB




Inference
16 links to TOR
(streaming data)
8 links HBM (weights)
1 link: CPU

CPU

Diverse Node Configurations for Datacenter Workloads

Data Mining
6-links: HBM
15 links: NVRAM
(capacity)

4 links: CPU
(branchy code)

Graph Analytics

* 16 links HBM
« 8links TOR
« 1 Link CPU




Memory Disaggregation

Memory pressure at NERSC, 2018 About 15% of NERSC workload

== Edison 2014 == Edison == Cori-Haswell Cori-KNL uses more than 75% of the
100 , available memory per node.

And ~25% uses more than 50%
of available memory.

75

20 But 75% of Haswell job hours

(60% of KNL) use < 25% memory

25

Cumulative fraction of node hours (%)

0 25 50 75 100

Fraction of Node Memory Used (%) Overestimate: maxrss x ranks_per_node
Assumes memory balance across MPI ranks.

Brian Austin: NERSC Workload Analysis




Disaggregated Node/Rack Architecture

Disagqgregated rack

Current server

S S e
’ cru ) cru) Py /cry )/

Current rack @ @ Pool and compose

e fore/ e fore/

P A

-4 crujore/

Most solutions current disaggregation solutions use Interconnect bandwidth (1 — 10 GB/s)
But this is significantly inferior to RAM bandwidth (100 GB/s — 1 TB/s)



Interposers are the right point of intersection where copper pin

bandwidth density could match photonics bandwidth density!

Through-Silicon Vias (TSVs), pBumps

m— EE ”””” SOOTW' Good News: Extend Bandwidth Density
- reulontrolierdie | and lower power/bit

L A A A A A A A A A

1024 data links / HBM stack @ 500MHz L Bad News: LImItEd (~2cm) reach

— Cannot get outside of the package (but

Package substrate we need to!!!l)

1k ‘3 \\\‘I
S
DL
2'e’'s

&

179 13.9 &V X2ey

= 5X the bandwidth v. GDDR5
= Up to 16GB
= One-third the footprint

= Half the energy per bit

= Managed memory stack for optimal
levels of reliability, availability and
serviceability




179 13.9 vV X2eq 50 um

Through-Silicon Vias (TSVs), uBurr
G S feveen  DRAM T
GPU metslzaion yer dice snllm

e . I—‘—‘—l
Silicon inte rposer 1024 data links / HBM stack @ 500MHz

Package substrate

In-package integration

Solder Microbumps
& Copper Pillars @ 10Gbps

Wide and Slow!

56560000
565560666
55556666

66550000

-2.5dBm
(0.56mW)

15.0dB
WPE: 10%

-17.5 dBm
Sensitivity of
Receiver @ 10Gb/s

DWDM Using Silicon Photonics

Ring Resonators @ 10 Gigabits/sec per chan
Many channels to get bandwidth density

Wide and Slow!

n
o

0

-20

2|
1450

Power [dBm]

1500

1550
Wavelength [nm]

1600

Comb Laser Sources

Single laser to efficiently
generate 100s of frequencies

Wide and Slow!

1650




Photonic MCM (Multi-Chip Module)

Comb Laser Source with
DWDM Silicon Photonics
Wide-and Slow for high speed links

Photonic SiP
‘ Through-Silicon V'ras%TSys?wE* l,‘;mwmv
G P U metalization layer Ju "_‘_; :- N :tz.‘z' %"m%almf‘f ghi—'; ‘ }:{i_‘g
Y Y Y Y Y M —
| m—— |

Silicon interposer 1024 data links / HBM stack @ 500MHz

Package substrate




Photonic MCM (Multi-Chip Module)

Silicon interposer

Package substrate

Photonic SiP

GP

NV

M

Packet
Switching MCM

To other gfes

{ Through-Silicon Viag~ 1T9Vs? 2B L w*r'rw
'l
q

1024 data links / HBM stack @ 500MHz

NVRAM MCM




Inference
* 16 links to TOR
(streaming data)
* 8 links HBM (weights)
* 1link: CPU

CPU GPU E TOR

V. <

Data Mining
6-links: HBM
15 links: NVRAM (capacity)
4 links: CPU (branchy code

Graph Analytics
« 16 links HBM

- 8links TOR

1 Link CPU

-l

r

Configure for Inference>




Architecture Specialization for Science

(hardware is design around the algorithms) can’t design effective hardware without math

Materials CryoEM Genomics Digital fluid
Density Functional Accelerator Accelerator Accelerator

Theory (DFT) LBNL detector String matching 3D integration
Use O(n) algorithm 750 GB / sec Hashing Petascale chip
Dominated by FFTs Custom ASIC near 1024-layers

2-8bit (ACTG)
FPGA solution

detector

FPGA or ASIC General / special

HPC solution




Conclusions

* Think more seriously about how to put
specialization productively to use for science

— Requires deep understanding of applied mathematics
and the underlying algorithms to be successful

 Reevaluate the business/economic model for the
design and acquisition of HPC systems

* Accelerate the development of materials, devices,
and systems for post-CMOS electronics




Beyond-Moore Computing Directions

Heterogeneous Post CMOS New Models of
Architectures Devices/Materials Computation

Specialized Evaluate new devices Quantum algorithms,
accelerators for using simulation tools and testbeds, for
performance / energy across scales science applications

Workload Analysis, Testbeds, Deployment




